2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO full questions from each part.

PART – A

1 a. Find the Fourier series of $f(x) =\begin{cases} \pi + 2x & \text{in } -\pi \le x \le 0 \\ \pi - 2x & \text{in } 0 \le x \le \pi \end{cases}$ (06 Marks)

b. Obtain Fourier half range sine series of $f(x) = \begin{cases} \frac{1}{4} - x & \text{; } 0 < x < \frac{1}{2} \\ x - \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ (07 Marks)

c. Find the Fourier series of y upto second harmonics from the following table:

x:	0	2 🔍	4	6	8	10	12
y:	9	18.2	24.4	27.8	27.5	22	9

(07 Marks)

2 a. Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & \text{for } |x| \le 1 \\ 0 & \text{for otherwise} \end{cases}$ and hence deduce that

$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} \cdot dx = \frac{-\pi}{4}.$$
 (07 Marks)

- b. Find the inverse Fourier sine transform of $F_s(u) = \frac{1}{u}e^{-au}$, a > 0. (06 Marks)
- c. Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$. (07 Marks)

3 a. Obtain the various possible solutions of the Laplace's equation $u_{xx} + u_{yy} = 0$ by the method of separation of variables. (07 Marks)

b. Solve the heat equation $u_t = c^2 u_{xx}$ subject to the conditions, u(0, t) = 0, u(10, t) = 0 and u(x, 0) = f(x) where $f(x) = \begin{cases} x & \text{in } 0 \le x \le 5 \\ 10 - x & \text{in } 5 \le x \le 10 \end{cases}$ (06 Marks)

c. Obtain the D'Alembert's solution of the one dimensional wave equation. (07 Marks)

4 a. Fit a parabola of the form $y = ax^2 + bx + c$ to the following data:

X:	0	1	2	3	4	5
y:	1	3	7	13	21	31

(06 Marks)

b. Minimize: z = 5x + 4y subject to the constraints $x + 2y \ge 10$, $x + y \ge 8$, $2x + y \ge 12$, $x \ge 0$, $y \ge 0$ by graphical method. (07 Marks)

c. Maximize z = 6x + 9y subject to the constraints $2x + 2y \le 12$, $x + 5y \le 44$, $3x + y \le 30$, $x \ge 0$, $y \ge 0$ by applying simplex method. (07 Marks)

- Using Regula-falsi method find the real root of tanx + tanhx = 0, which lies between 2 and 3 5 carryout three iterations.
 - Apply Gauss-Seidel method to solve equations 12x + y + z = 31, 2x + 8y z = 24, b. 3x + 4y + 10z = 58. Perform four iterations.
 - Using Rayleigh power method find the largest eigen value and the corresponding eigen

Using Rayleigh powe	i incuica	Hite	S. Aller	
0 -				
vector of the matrix	$A = \begin{vmatrix} -2 \end{vmatrix}$	3 —1 use [1	0 0] ^T as initial vector,	, carry out six
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	_1 _3]		(07 Marks)

iterations.

(07 Marks)

From the following data, estimate the number of students who have scored less than 70 6

Marks:	0-20	20-40	40-60	60-80	80-100
No. of students:		62	65	50	17

(06 Marks)

b. Use Lagrange's interpolation formula to fit a polynomial for the data:

x:	0	1	3	4
y:	-12	0	6	12

Hence estimate y at x = 2.

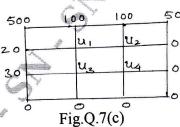
(07 Marks)

- c. Evaluate, $\int_{0.5}^{0.5} \sqrt{1-8x^3} dx$ by using Simpsons $3/8^{th}$ rule, taking six equal parts. (07 Marks)
- 7 a. Solve $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to u(0, t) = 0, u(4, t) = 0, u(x, 0) = x(4 x) by taking h = 1, k = 0.5 upto four steps.
 - b. Solve $\frac{\partial^2 u}{\partial x^2} = 32 \frac{\partial u}{\partial t}$ subject to u(0, t) = 0, u(1, t) = t and u(x, 0) = 0 upto t = 5 by

Bendre-Schmidt process taking $h = \frac{1}{4}$

(07 Marks)

c. Solve $u_{xx} + u_{yy} = 0$ in the following square region with the boundary conditions as indicated in the figure:



a. Find the Z-transforms of $sinhn\theta$ and $coshn\theta$.

(06 Marks)

- b. If $u(z) = \frac{2z^2 + 5z + 14}{(z-1)^4}$. Find the values of u_0 , u_1 , u_2 and u_3 . (07 Marks)
- c. Solve the difference equation $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$ and $u_1 = 1$ by using (07 Marks) z-transform.